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It is demonstrated that the approximate kinetic energy density

calculated using the second-order gradient expansion with

parameters of the multipole model ®tted to experimental

structure factors reproduces the main features of this quantity

in a molecular or crystal position space. The use of the local

virial theorem provides an appropriate derivation of approx-

imate potential energy density and electronic energy density

from the experimental (model) electron density and its

derivatives. Consideration of these functions is not restricted

by the critical points in the electron density and provides a

comprehensive characterization of bonding in molecules and

crystals.
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1. Introduction

Electron density �(r), its gradient vector ®eld r�(r), its

Laplacian r2�(r) ®eld and characteristics of the critical points

[the points where r�(r) = 0] provide a quantitative descrip-

tion of bonding in molecules and crystals in terms of quantum-

mechanical topological theory (Bader, 1990). The pairs of

gradient lines in the r�(r) ®eld originated at the saddle critical

point between atoms, rb, and terminated at two neighboring

nuclei, along which the electron density (ED) is maximal with

respect to any other line, are the most important for char-

acterization of the atomic interactions. They form the atomic

interaction lines named the bond paths in an equilibrium

system. Corresponding bond critical points are denoted as

(3,ÿ1): they are characterized by three non-zero eigenvalues

of the curvature or Hessian matrix, �i, and the sum of the

algebraic signs of �i is ÿ1. Values �1 < 0 and �2 < 0 measure

the degree of the ED contraction towards the bond critical

point, while �3 > 0 measures the degree of the ED contraction

towards each of the bonded nuclei. The sign of the Laplacian

at the bond critical point r2�(rb) = �1 + �2 + �3 depends on the

relationship between the �i values at this point. If the electrons

are locally concentrated around the bond critical point

[r2�(rb) < 0], the electrons are shared by both nuclei: this is

typical for shared or covalent atomic interactions. Otherwise

the electrons are concentrated in each of the atomic basins

[r2�(rb) > 0] and the atomic interaction belongs to the closed-

shell type. The latter is typical for ionic, hydrogen and van der

Waals bonds (Bader & Essen, 1984; Bone & Bader, 1996).

Thus, r2�(rb) re¯ects the character of the atomic interactions.

Local concentrations and depletions of the electrons in the

internuclear space are connected with the features of the

electronic energy distribution via the local form of the virial

theorem (Bader & Beddall, 1972):



2g�r� � v�r� � �h- 2=4m�r2��r�: �1�
The latter expression gives an exact explicit relationship

between the second derivative of the electron density and the

(quasi-classical) electronic kinetic energy density

g�r� � �h- 2=2m�rrrr0�r; r0�r�r0 �2�
and electronic potential energy density

v�r� � ÿPa Zae2= rÿ Ra� �� �
��r� � e2

R
ÿ r; r1� �= rÿ r1� �� �

dr1:

�3�

Here, (r, r0) and ÿ(r, r1) are one- and two-electron density

matrices, respectively, Za is the charge of nucleus a, e is the

electron charge, and m is the electron mass. One-electron

functions g(r) and v(r) describe the local contributions to the

electronic kinetic and potential energies; g(r) > 0 and v(r) < 0

everywhere in the equilibrium system (Bader & Essen, 1984;

Bader, 1998). The local electronic potential energy dominates

at the (3,ÿ1) critical point in the case of the shared-type

atomic interactions. Whether kinetic or potential electronic

energy will locally dominate in the closed-shell bond critical

point depends on the speci®city of the bonding.

The density of the electronic energy (Bader & Beddall,

1972)

he�r� � g�r� � v�r� �4�
gives a more straightforward criterion for the recognition of

the atomic interaction type: he(rb) < 0 is observed in shared-

type atomic interactions, while he(rb) > 0 is observed in closed-

shell interactions (Cramer & Kraka, 1984; Bone & Bader,

1996).

The electronic potential density distribution represents the

virial ®eld of the Ehrenfest (1927) force acting on an electron

at r (Bader, 1994, 1998). The Ehrenfest force governs the

motion of electrons and, therefore, plays an important role in

the quantum mechanics of molecules and crystals (Bader,

1994). Keith et al. (1996) noted that for every atomic inter-

action type, each bond path is homeomorphically mirrored by

a virial path, a line of maximally negative potential energy

density linking the same nuclei. According to Bader (1998),

the presence of the virial path provides an indicator of

bonding atomic interaction. The network of virial and bond

paths linking neighboring nuclei de®nes a molecular graph,

which is invariant to the nuclear vibrations in a stable system.

Thus, consideration of the local electronic energies provides

a direct approach to characterization of bonding in molecules

and crystals. Bader & Preston (1969), Bader & Beddall (1972),

Keith et al. (1996) and Bader (1998) have studied energy

distributions in molecules; their calculations were based on

wave functions. On the other hand, the electronic kinetic

energy density g(r) can be calculated within the density

functional formalism, which allows the avoidance of any wave-

function calculation (Hohenberg & Kohn, 1964; Kirzhnits et

al., 1975; Lundqvist & March, 1983; Dahl & Avery, 1984;

Dreizler & Gross, 1990; Ellis, 1995; Springborg, 1997). Tsir-

elson (1992) pointed out that combining the density functional

theory and ED derived from X-ray diffraction signi®cantly

expands the frameworks of the traditional structure analysis.

In this work, this approach will be explored and results will be

presented for the local energy functions obtained for crystals

with different types of chemical bonds.

The local energy functions can also be calculated using the

one-electron density matrix reconstructed from the electron

density (Tsirelson et al., 1977; Tsirelson & Ozerov, 1979, 1996;

Clinton et al., 1983; Gritsenko & Zhidomirov, 1987; Levy &

Goldstein, 1987; Aleksandrov et al., 1989; Schwarz & Mueller,

1990; Schmider et al., 1992; Zhao & Parr, 1993; Jayatilaka,

1998). This approach is not discussed here.

2. Functionals for kinetic energy

The main problem in density functional theory consists in

expressing the kinetic, exchange and correlation energy

densities in terms of �(r) (Lundqvist & March, 1983; Parr &

Yang, 1989; Dreizler & Gross, 1990; Reznik, 1992; Tsirelson &

Ozerov, 1996). The standard way to solve this problem for

kinetic energy density uses the fact that the one-electron

density matrix (r, r0) is related to the one-particle Green

function by the inverse Laplace transform (Parr & Yang,

1989). Both gradient h- -expansion of the Green function

around the classical Thomas±Fermi approximation (Kirzhnits,

1957) and presentation of the zero-order Green function in

the mean-path approximation using the Feynman path-inte-

gral method (Yang, 1986) lead to the same general expression

for kinetic energy density:

g�r� �
�

3h- 2

10m

�
�3�2�2=3��r�5=3 � ��h

- 2=m��r��r��2

��r�

� k

�
h- 2

2m

�
r2��r�: �5�

The gradient expansion, which is valid for smooth (but not

necessary small) variations of the electron density, gives � = 1/

72 and k = 1/6, while the mean-path approximation leads to

� = 1/72 and k = 1/12. Weizsaecker (1935), taking one-electron

wave functions as the modi®ed plane waves, arrived at equa-

tion (5) with � = 1/8 and k = 0: his result, corresponding to a

fast-oscillating ED, does not follow, however, from either

gradient expansion or mean-path approximation.

Kirzhnits (1957), Santos & Villagra (1972), Kirzhnits et al.

(1975), Brack et al. (1976), Alonso & Girifalco (1978),

Grammaticos & Voros (1979), Yang (1986), Yang et al. (1986),

Dreizler & Gross (1990), Yang et al. (1996), Abramov (1997a)

and Fuentealba (1997) stressed the importance of the Lapla-

cian term in equation (5). The latter does not affect the

average energy of a system, but it provides a description of the

electronic shells and improves the local kinetic energy beha-

vior in the valence electron areas.

Consideration of the asymptotic behavior of the kinetic

energy density (2) derived from the one-electron density

matrix (Bader & Beddall, 1972) shows that g(r) goes to
1
2Z

2�i(Ri) with r) Ri, where �i(Ri) is the value of the ED at

nucleus positions Ri. From (5), the approximate value of g(r)
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goes to minus in®nity with r) Ri because of the Laplacian

term. Therefore, the regions close to the nuclei should be

excluded from consideration during the interpretation of the

approximate g(r). Note that the accuracy of determination of

both experimental and theoretical electron densities and their

derivatives near nuclei is pure owing to a variety of factors

discussed by Tsirelson & Ozerov (1996). The long-range

behavior of the approximate g(r) is physically acceptable

provided expansion is restricted by the second-order term (Tal

& Bader, 1978).

The size of the holes around the nuclei within which an

approximate g becomes negative is quite small. For example,

for gradient expansion, the hole radius is maximal for

hydrogen atoms (0.15 AÊ ); it is less than 0.02 AÊ for atoms with

Z � 11 and reaches a value of 0.005 AÊ for Z = 36. This

observation ®ts the 1/Z-dependency for the hole radius

marked by Yang et al. (1986). Thus, the region where the

approximation (5) is not suitable for describing the kinetic

energy density is completely within the area of uncertainty

(due to experimental and model errors in ED) of this function.

It is well documented (Politzer & Parr, 1974; Tal & Bader,

1978; Parr & Yang, 1989; Reznik, 1992) that the average

molecular energy calculated by the variational principle using

expression (5) is only qualitatively close to the experimental

one. At the same time, the use of the Hartree±Fock wave

functions to describe � in (5) results in the average kinetic

energy differing from the Hartree±Fock value by about 1%.

The accuracy of the model electron density reconstructed

from X-ray diffraction experiments is the same order as the

Hartree±Fock electron density provided the regions close to

the nuclei are excluded from consideration (Tsirelson &

Ozerov, 1996). This quasi-static ED obtained by the ®t of some

analytical structural model to the measured intensities

corrected for multiple scattering, absorption, thermal diffuse

scattering and extinction is only slightly distorted by experi-

mental and model errors (Tsirelson & Ozerov, 1996). It is also

close to the quantum-mechanical � calculated using wave

functions obtained by the variational principle. Signi®cantly,

the model ED exhibits the same set of critical points as the

quantum-mechanical � (Kapphahn, Tsirelson & Ozerov, 1988,

1989; Tsirelson et al., 1998), and it can be considered to be a

homeomorphic image of the `true' � derived from ®rst prin-

ciples.

Following Masunov & Vyboishchikov (1993), Abramov

(1997a) studied the kinetic energy values at the bond critical

points using expression (5) with � = 1/72 and k = 1/6 (gradient

expansion) and experimental ED in some covalent and ionic

compounds. Espinosa et al. (1998, 1999) and Espinosa &

Molins (2000) applied the same approach to the determination

of the energy characteristics of the hydrogen bonds in a

number of crystalline systems. The local potential energy v(r)

and electronic energy he(r) at the bond critical points were

determined using expressions (1), (4) and (5). However, it is

appropriate to mention here that the model ED is derived by

the ®t to experimental structure factors, not by the variational

principle. Hence, it does not necessarily obey the local virial

theorem (1) and can lead to unphysical potential energy

distributions. Therefore, ®rstly, it is essential to clarify to what

extent this approach is suitable for the determination of the

local energy characteristics.

To explore this point, we calculated the kinetic energy

density (5) for crystalline LiF using quantum-mechanically

valid Hartree±Fock electron densities. In accord with Bader &

Platts (1997), a cubic-like cluster Li14F�13 surrounding the

central ¯uorine ion was used to simulate an LiF crystal. The

PC version (Granovsky, 2000) of program GAMESS (Schmidt

et al., 1993) was used. The wave function for LiF was calcu-

lated in the 6±311 G* basis set; the optimized geometry of a

cluster was taken from Bader & Platts (1997). Then, both the

gradient expansion (Kirzhnits, 1957) and mean-path (Yang,

1986) approximations were used to calculate the kinetic

energy density g(r) (5). The local potential energy v(r) was

calculated using the local virial theorem (1), which is valid in

the Hartree±Fock theory. Functions g(r) (2) and v(r) (3) were

also calculated directly from the Hartree±Fock wave functions

using the AIMPAC program suite (Biegler-Koenig et al.,

1982).

A comparison of the approximate local energy densities

with the Hartree±Fock ones for the crystalline LiF is given in

Figs. 1 and 2. These ®gures show that the kinetic energy

densities calculated using the gradient expansion and mean-

path approximation differ in the low electron density regions

at the center of the (100) plane. This difference has an

important consequence: the function g(r) calculated using the

Kirzhnits (1957) gradient expansion leads to the potential

energy density, which is negative everywhere, while the Yang

(1986) approximation results in physically unacceptable

positive regions in the local potential energy corresponding to

the low electron density regions.

We performed similar calculations for some crystals with

rock-salt structure (Tsirelson & Ivanov, 2000), diamond and

solid krypton (Tsirelson, 2000), and single molecules of LiF

and urea, CO(NH2)2, and obtained the same result: the Yang

(1986) approximation led to positive areas in the local

potential energy corresponding to low electron density regions

(such regions, for example, are to be found on the periphery of

free molecules).

According to Yang et al. (1986), the mean-path approx-

imation provides a better zero-order description for both

diagonal and off-diagonal elements of the one-electron

density matrix, at least at the Wentzel±Kramers±Brillouin

(WKB) approximation level. However, the positive areas in

the potential energy density, calculated from the Hartree±

Fock electron density using Yang's approximation for the

kinetic energy and the local virial theorem (1), led us to

conclude that the Kirzhnits (1957) approximation (or gradient

expansion) is preferable for studying the energy distributions.

Moreover, the Kirzhnits (1957) kinetic energy density g(r) is

closer to the Hartree±Fock one (Fig. 1). For this reason, the

kinetic energy densities discussed in the rest of this work were

obtained by the gradient expansion method only. The energy

density functions calculated from the Hartree±Fock ED using

this approximation will be referred to henceforth as HF/DFT

ones, while functions calculated using the model ED derived



from X-ray diffraction experiments will be denoted as EXP/

DFT.

Compare now the gEXP/DFT and vEXP/DFT functions calcu-

lated using the experimentally derived parameters of the

multipole model for an LiF crystal (Tsirelson et al., 1998) and a

single (removed from a crystal) molecule of urea (Zavodnik et

al., 1999) with the Hartree±Fock ones. Corresponding maps

are presented in Figs. 3 and 4, while numerical characteristics

of these functions are listed in Tables 1 and 2. Optimization of

geometry and calculation of the wave function for a free urea

molecule was done in the 6±311 G** basis set; the results were

very close to those of Gatti et al.

(1994). The periphery of the model

electron density of a urea molecule

removed from a crystal is slightly

perturbed by the intermolecular

interactions (Fig. 4a). Moreover, the

geometrical parameters of a urea

molecule in a crystal differ from

those in a free state (Table 2). In

spite of that, the same functions

obtained from different sources are

in reasonable agreement for both

LiF and urea. The maximal discre-

pancy between HF/DFT and EXP/

DFT densities g and v (Figs. 3 and 4)

is observed in regions very close to

the nuclei (which are omitted in the

®gures) for the reason explained

above. The agreement of the (3,ÿ1)

critical point characteristics (Tables

1 and 2) for both functions could be

appraised as semi-quantitative. We

can hardly expect a better agree-

ment. First, the rapid variation of

the electron density in the vicinity of the nuclei and its slow

variation in the valence electron shells prevents the existence

of the density functional approximation for g(r), which

provides a good description everywhere in the position space

(Tal & Bader, 1978; Parr & Yang, 1989; Reznik, 1992). Second,

the leading term in the kinetic energy density expansion (5)

comes from the statistical Thomas±Fermi theory, which is valid

for high-density regions. Quantum corrections improve the

local behavior of this function; however, discrepancy with the

Hartree±Fock kinetic energy density still remains. At the same
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Figure 2
Distributions of the potential energy v(r) in the (100) plane of crystalline
LiF. The upper-right triangle represents the v(r) function calculated
directly from the Hartree±Fock wave functions by expression (3), while
the lower-left triangle represents the v(r) function calculated using the
Hartree±Fock electron density by combination of expressions (1) and (5)
with (a) � = 1/72 and k = 1/6 [Kirzhnits (1957) approximation] and (b)
� = 1/72 and k = 1/12 [Yang (1986) approximation]. Line intervals are
�2 � 10n a.u., �4 � 10n a.u. and �8 � 10n a.u. (ÿ2 � n � 1). Negative
values are solid, zero contour is dot-dashed.

Figure 1
Distributions of the kinetic energy g(r) in the (100) plane of crystalline
LiF. The upper-right triangle represents the g(r) function calculated
directly from the Hartree±Fock wave functions by expression (2), while
the lower-left triangle represents the g(r) function calculated using the
Hartree±Fock electron density by expression (5) with (a) � = 1/72 and
k = 1/6 [Kirzhnits (1957) approximation] and (b) � = 72 and k = 1/12
[Yang (1986) approximation]. Line intervals are 2 � 10n a.u., 4 � 10n a.u.
and 8 � 10n a.u. (ÿ2 � n � 1).

Table 1
The characteristics of the (3,ÿ1) bond critical point in an LiF crystal (a.u.).

Interaction Origin of the electron density �(rb) r2�(rb) v(rb) g(rb) he(rb)

LiÐF Hartree±Fock 0.022 0.183 ÿ0.029 0.038 0.009
Experiment 0.021 (2) 0.156 (1) ÿ0.021 (2) 0.032 (2) 0.011 (2)
Ionic procrystal 0.019 0.156 ÿ0.022 0.030 0.008

FÐF Hartree±Fock 0.013 0.052 ÿ0.0127 0.0128 0.0001
Experiment 0.012 (1) 0.041 (2) ÿ0.007 (2) 0.009 (2) 0.002 (2)
Ionic procrystal 0.012 0.042 ÿ0.008 0.008 0.000

Table 2
The characteristics of the (3,ÿ1) critical points in a single urea molecule.

The experimental and Hartree±Fock values are presented in the ®rst and second lines, respectively.

Bond
Bond
distance (AÊ ) �(rb) (e AÊ ÿ3) r2�(rb) (e AÊ ÿ5) g(rb) (a.u.) v(rb) (a.u.) he(rb) (a.u.)

CÐO 1.258 (1) 2.25 (5) ÿ23.69 (20) 0.398 ÿ1.050 ÿ0.652
1.195² 2.95 ÿ24.425 0.730 ÿ1.505 ÿ0.776

CÐN 1.343 (1) 2.34 (5) ÿ32.32 (23) 0.272 ÿ0.871 ÿ0.599
1.362 2.19 ÿ22.227 0.268 ÿ0.767 ÿ0.499

NÐH1 (NÐH2)³ 1.001 (4) 2.01 (5) ÿ42.06 (30) 0.088 ÿ0.614 ÿ0.526
0.991 2.41 ÿ47.139 0.054 ÿ0.597 ÿ0.543

² Molecular geometry optimization was performed in the 6±311 G** basis set. Values of the optimized valence angles are CÐ
NÐH1 117.24� , CÐNÐH2 123.50�, NÐCÐO 122.57� . ³ Experimental intramolecular NÐH distances and corresponding
characteristics of the (3,ÿ1) critical points, which are different in a crystal, were averaged.
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time, it is essential that the local energy functions gEXP/DFT and

vEXP/DFT exhibit the same topology as the appropriate

Hartree±Fock functions. The only exception is the N� � �H
bond, where the negative hole in gEXP/DFT, mentioned above,

devours the saddle points in gEXP/DFT and vEXP/DFT.

Thus, approximation of the kinetic energy density by the

gradient expansion and its calculation using parameters of the

multipole model ®tted to experimental structure factors

reasonably reproduces the main features of this quantity in a

position space of a molecule or crystal. The use of the local

virial theorem also provides the appropriate derivation of the

approximate potential energy density from the model ED. We

can conclude that combination of the formulae of the density

functional theory and the model electron density is proved to

be useful for characterization of bonding in molecules and

crystals in terms of the local energy functions.

3. The features of the local energy functions for closed-
shell and shared-type atomic interactions
Consider now the features of the local energy functions

obtained from the model electron density for crystalline LiF

and urea ± compounds with different types of interatomic

interactions.

The distributions of the local kinetic energy, gEXP/DFT(r),

and potential energy, vEXP/DFT(r), and the density of the

electronic energy, he,EXP/DFT(r), in LiF are shown in Fig. 5. The

values of these functions in the (3,ÿ1) critical points in the ED

are given in Table 1. First, note that the function ÿv is

structurally homeomorphic to the ED depicted in Fig. 3(a).

This means that each virial path in ÿv will mirror a bond path

in the electron density of the crystalline LiF as observed by

Keith et al. (1996) for molecules. Second, the network of the

bond and virial paths (they are not shown in the ®gures)

Figure 3
Distributions of the electron density (a) and the kinetic (b) and potential (c) energies in the (100) plane of crystalline LiF. The upper-right triangle
represents the functions calculated directly from the Hartree±Fock wave functions, while the lower-left triangle represents the functions calculated, as
explained in the text, using the model electron density deduced from X-ray diffraction experiments. The Kirzhnits (1957) approximation was used to
calculate the kinetic energy density. Line intervals are 2 � 10n a.u., 4 � 10n a.u. and 8 � 10n a.u. for (a) (ÿ2 � n � 0) and (b) (ÿ2 � n � 1), and (c)
ÿ2 � 10n a.u., ÿ4 � 10n a.u. and ÿ8 � 10n a.u. for (ÿ2 � n � 1).

Figure 4
Distributions of the electron density (a) and the kinetic (b) and potential (c) energies in a single (removed from a crystal) urea molecule. The upper part
of the picture represents the functions calculated directly from the Hartree±Fock wave functions, while the lower triangle represents the functions
calculated, as explained in the text, using the multipole parameters of the electron density derived from X-ray diffraction experiments. The Kirzhnits
(1957) approximation was used to calculate the kinetic energy density. Line intervals are 2 � 10n a.u., 4 � 10n a.u. and 8 � 10n a.u. (ÿ2 � n � 2); solid
lines correspond to negative values of the potential energy density. The geometrical parameters of a free molecule and a molecule in a crystal are
different (see Table 2). For this reason, the maps were merged so that the positions of the C atoms coincided.



connects the nearest-neighbor Li±F and F±F atomic pairs.

Thus, the secondary atomic interactions in the rock-salt type

crystals discussed by Tsirelson (1996), Tsirelson et al. (1998),

Luana et al. (1997), Martin Pendas et al. (1998) and Abramov

(1997b) manifest themselves in the potential energy distribu-

tion, not just in the electron density. Finally, the electronic

energy density he (Fig. 5c) has a minimum along these lines,

having positive values in (and around) the ED bond critical

points.

These observations give a much more complete picture of

the closed-shell atomic interactions than is usually obtained in

the treatment of experimental electron density in terms of the

values of the ED and the Laplacian of the ED at the bond

critical points. In particular, Fig. 5(c) also explicitly reveals the

stabilizing role of the anions in forming the LiF crystal

structure. This supports the early conclusion by Martin Pendas

et al. (1998), based on the features of the Laplacian of the ED

in binary ionic crystals. The potential energy is negative along

the FÐF lines and there is no evidence of any pairwise FÐF-

speci®c interactions, as has been suggested (Abramov, 1997b).

The latter observation is in accordance with the quantum-

mechanical explanation of the bonding in LiF given by Bader

(1998).

Note that energy characteristics calculated for an ionic

procrystal model (a hypothetical set of spherical atoms or ions

placed in the same positions as the real ones) in LiF are in very

good agreement with the experimental ones (Table 1). From

one side, this means that topological analysis of a procrystal

may be used for a priori prediction of properties of ionic

compounds. On the other side, however, we need to make

more effort to establish the subtle changes in the electron

density and energy characteristics separating a crystal from a

procrystal.

The distributions of the same local energy functions in

crystalline urea, CO(NH2)2, are shown in Fig. 6. The structure

of this compound [space group P�421m, Z = 2 (2 mm)] is

characterized by the ribbons of doubly hydrogen-bonded

molecules arranged in a head-to-tail fashion along the c axis.
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Figure 5
Distributions of the kinetic (a), potential (b) and electronic (c) energies in the (100) plane of crystalline LiF calculated using the model electron density
derived from X-ray diffraction experiments and formulae of the density functional theory (see text). Line intervals are (a) 2 � 10n a.u., 4 � 10n a.u. and
8 � 10n a.u. (ÿ2 � n � 0); (b) ÿ2 � 10n a.u., ÿ4 � 10n a.u. and ÿ8 � 10n a.u. (ÿ2 � n � 2); (c) �2 � 10n a.u., �4 � 10n a.u. and �8 � 10n a.u. (ÿ2 � n
� 2). Solid lines correspond to negative values of the potential energy density and positive values of the electronic energy density in (b) and (c),
respectively.

Figure 6
Distributions of the kinetic (a), potential (b) and electronic (c) energies in
crystalline urea (half of the molecule is shown) calculated using the model
electron density derived from X-ray diffraction experiments and
formulae of the density functional theory (see text). Line intervals are
(a) 2 � 10n a.u., 4 � 10n a.u. and 8 � 10n a.u. (ÿ3 � n � 1); (b)
ÿ2 � 10n a.u., ÿ4 � 10n a.u. and ÿ8 � 10n a.u. (ÿ3 � n � 1); (c)
�2 � 10n a.u., �4 � 10n a.u. and �8 � 10n a.u. (ÿ3 � n �1). Solid lines
correspond to negative values of the potential energy density and
electronic energy density in (b) and (c), respectively; dashed lines
indicate hydrogen bonds. Small negative areas in the kinetic energy
density close to atomic centers are omitted.
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The plane of each ribbon is perpendicular to the adjacent

ribbons oppositely directed along the c axis. The O atom of a

carbonyl group in one ribbon is also involved in hydrogen

bonds with two adjusted ribbons. We can see that the potential

energy density is again homeomorphic to the ED and domi-

nates in all the intramolecular space. Electronic energy density

he(r) (Fig. 6c) is maximally negative along the intramolecular

bond lines in urea. It is also strongly negative inside the atomic

cores exhibiting the shell structure of bonded atoms. At the

same time, it is slightly positive around the ED (3,ÿ1) bond

critical points in the hydrogen bonds in urea, where the kinetic

energy dominates. This agrees with early observations made

for weakly bounded molecular systems (Bone & Bader, 1996)

and hydrogen bonds (Espinosa et al., 1999). Note that the

longer hydrogen bond [dO� � �H = 2.071 (2) AÊ ] is characterized

by a minimal value of he,min = +0.00125 a.u., while the shorter

hydrogen bond [dO� � �H = 2.014 (2) AÊ ] has the less positive

value he,min = +0.00055 a.u.

To reveal the ®ne features of the atomic interactions in

crystalline urea, we have also calculated the difference func-

tions (Bader & Preston, 1969)

�g�r� � gcryst�r� ÿ gprocryst�r� �6�
and

�v�r� � vcryst�r� ÿ vprocryst�r� �7�
depicted in Fig. 7. The subscript `cryst' denotes functions

calculated for a crystal, while the subscript `procryst' denotes

functions calculated for a procrystal. Both difference functions

exhibit changes in the corresponding energy densities caused

by the formation of a urea crystal from the atoms. We can see

that kinetic energy is increased strongly in the atomic cores of

non-H atoms (areas close to the nuclear positions are

omitted), being maximal in the N atom's core, and slightly in

the intramolecular bonds and electron lone-pair regions.

Potential energy increases strongly in both the atomic cores of

non-H atoms and the intramolecular bonds and electron lone-

pair regions. The distribution of �g(r) on the end O and H

atoms has a dipolar character, being positive behind the

nuclear positions. The distribution of �v(r) also has a dipolar

character; however the (negative) potential energy density

diminishes behind the H atoms and increases behind the O

atom during crystal formation. As a result, the positive elec-

tronic energy density he(r) dominates behind the H nucleus

positions (Fig. 6c). This ®nding may be useful in modeling the

hydrogen bond.

Thus, kinetic and potential energy distributions reveal

details of the stabilizing enhancement in the potential energy

and destabilizing increase in the kinetic energy resulting from

the formation of crystalline urea. It is remarkable that urea

crystallization results in very subtle changes in the g and v

distributions in the hydrogen bond regions (Fig. 7). In agree-

ment with the observation of Spackman (1999), the energy

distribution here is close to that in an atomic procrystal. The

distributions of g and v spanning the areas around the ED

(3,ÿ1) critical points characterizing the hydrogen bond in urea

are very ¯at. The same observation was recently made by

Galvez et al. (2001) in their theoretical study of bonding in the

hydrogen-bonded dimers. Therefore, quantitative determina-

tion of the energy characteristics in the hydrogen bond critical

points demands very accurate electron density. Correspond-

ingly, any conclusion that is based on these values should be

treated with care.

It is interesting that quasi-classic kinetic energy density g(r)

and potential energy density v(r) are structurally home-

omorphic to the electron density in LiF and urea. It should be

pointed out that, in general, this is not the case (Keith et al.,

1996).

4. Concluding remarks

The approach outlined above was tested on rock-salt type

crystals (Tsirelson & Ivanov, 2000), perovskites (Zhurova &

Tsirelson, 2002), energetic compounds (Zhurova, 2001) and

some other crystals with different types of chemical bonds

(Tsirelson, 2000). The general conclusion is that this approach

may be used at least at the semi-quantitative level for eluci-

dation of the physical nature of atomic and molecular inter-

actions. Moreover, recently we demonstrated that the electron

localization function (ELF) can be determined using the

Kirzhnits (1957) approximation for kinetic energy density

(Tsirelson & Stash, 2002). It possesses all the properties of the

quantum-mechanically calculated ELF. This fact gives addi-

tional support to the present results.

Note that recently Fuentealba (1997) has suggested an

approach to determine the g(r) function using the virial

Figure 7
Crystalline urea: the difference functions �g(r) = gcryst(r) ÿ gprocryst(r) (a)
and �v(r) = vcryst(r) ÿ vprocryst(r) (b) characterizing the changes in the
kinetic and potential energy densities, respectively, caused by the
formation of a crystal from the atoms (half of the molecule is shown).
Line intervals are 0.02 a.u. Solid lines correspond to excessive (positive)
kinetic energy density and (negative) potential energy density.



theorem relationships derived in the density functional theory.

Unfortunately, kinetic energy density in this approach

depends on the position of origin of the coordinate system:

this makes its application to molecules and crystals dif®cult.

Calculation of all the local energy characteristics from the

electron density in this work was performed with the

WinXPRO program (Stash & Tsirelson, 2002). Multipole

parameters were obtained with the aid of the Hansen &

Coppens (1978) model using the Clementi & Roetti (1974)

wave functions.
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